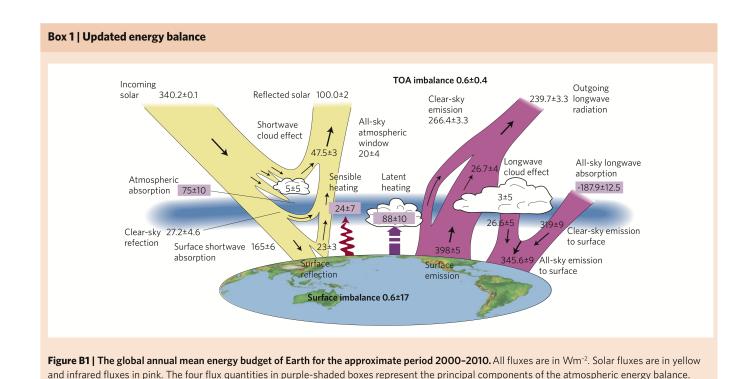
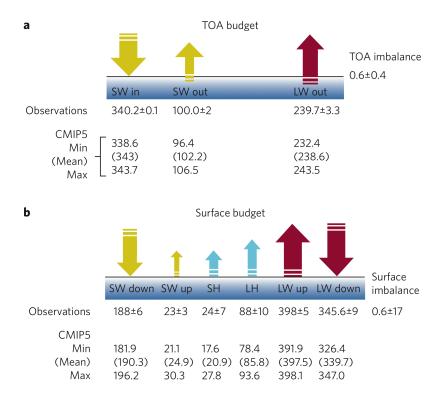
© 2014 California Institute of Technology. Government sponsorship acknowledged.

Comparison of GSFC v6.22 retrieved products of AIRS vs CrIMSS

Alexander Ruzmaikin
George Aumann and Evan Manning


Jet Propulsion Laboratory, California Institute of Technology

AIRS Spring Meeting, Pasadena 2016


Motivation

- ◆ CrIS is expected to continue AIRS climate record
- ◆ AIRS and CrIS BT at 900 cm⁻¹ for SNO shown only small differences (E.Manning & G. Aumann, 2015)
- ◆ AIRS and CrIS agree for uniform scenes at Dome C, differ not more than 100 mK at cold BTs (D.Elliott and G.Aumann, 2015)
- ◆ CrIS extreme T surf is larger than AIRS extremes (G.Aumann, 2015)
- ◆ For climate record we need to compare L2 data.

Climate related limits

Climate related limits

A net loss of radiation from Earth by clouds of 21.1±5 Wm², mostly by reflection of sunlight from clouds.

Climate related limits

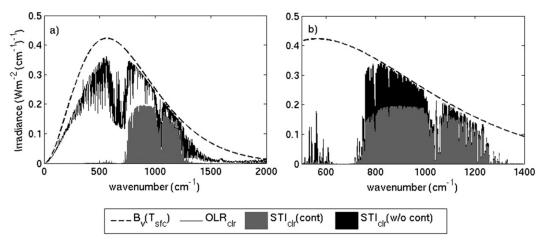


FIG. 1. Spectral distribution of the clear-sky Earth Radiation Budget components $[W m^{-2} (cm^{-1})^{-1}]$ using a global-mean atmosphere. (a) Longwave irradiance emitted by surface $B_{\nu}(T_{\rm sfc})$ assuming it to be a blackbody, the outgoing longwave radiation (OLR_{clr}), and surface transmitted irradiance including the water vapor continuum $[STI_{\rm clr} (cont)]$. (b) As in (a), over a smaller wavenumber interval, but includes, instead of OLR_{clr}, the surface transmitted irradiance when the water vapor continuum is excluded $[STI_{\rm clr} (w/o cont)]$.

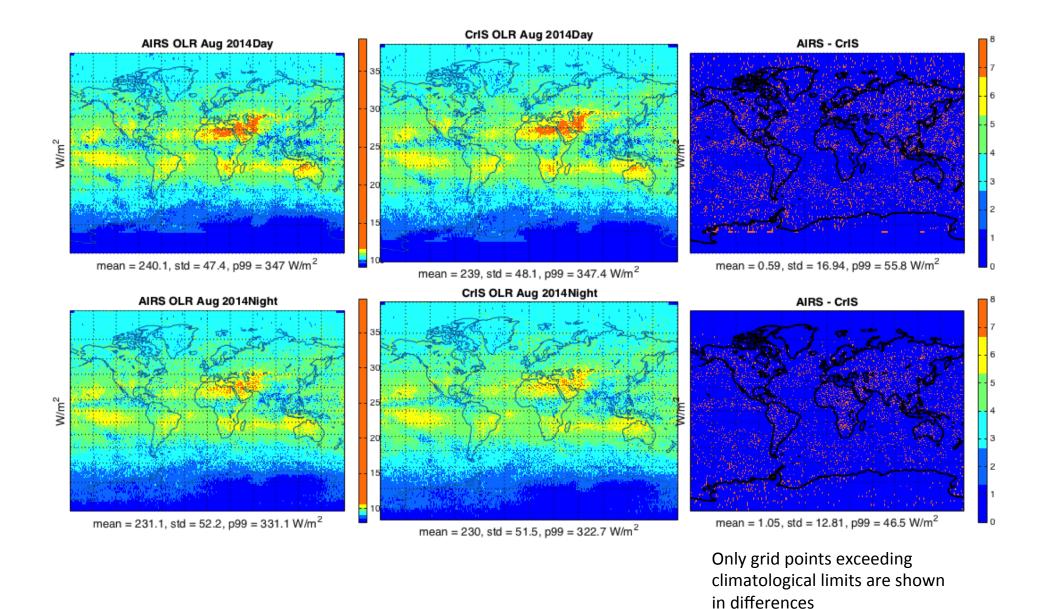
Surface Transmitted Irradiance is 66 W/ m² ±20%, with a distinctly different geo- graphic distribution, with a minimum in the tropics and local peaks over subtropical deserts.

Costa and Shine., 2012

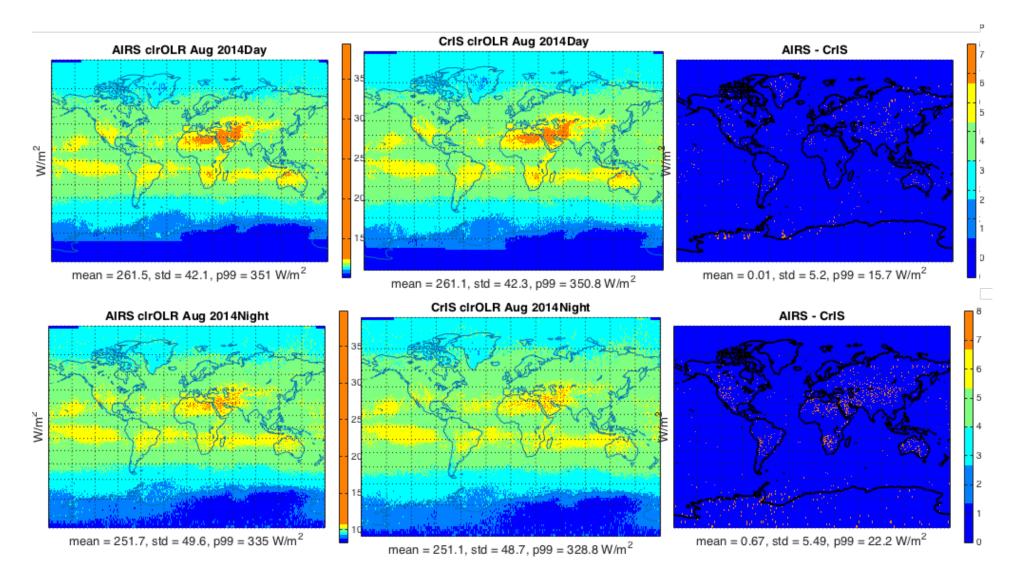
.

Data and Treat of Data

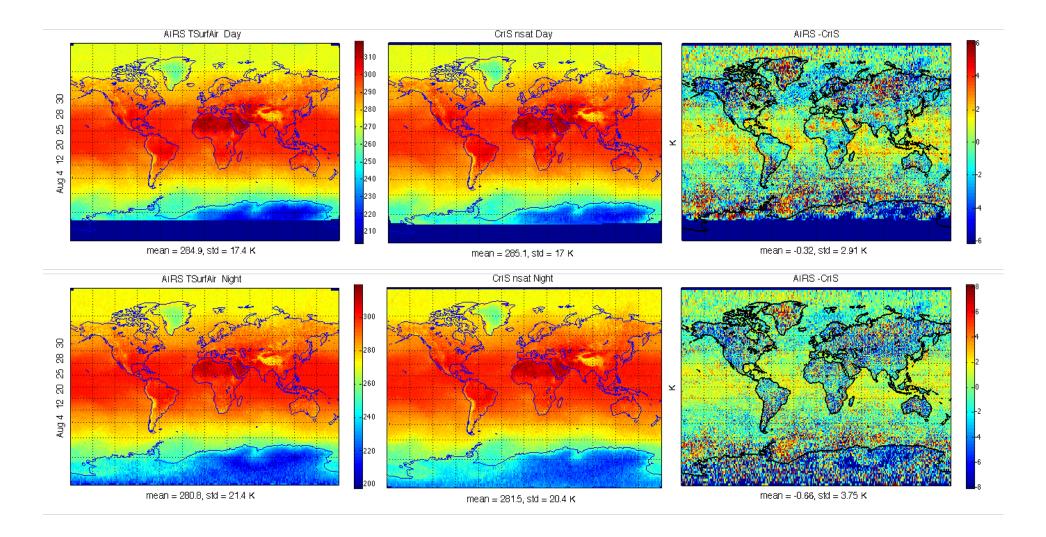
- ◆ We use August 2014 global daily data for matching Aqua and NPP orbits
- ◆ The data are retrieved for AIRS and CrIMSS by the same algorithm (GSFC v6.22).
- ◆ The data sets are conditioned by QC < 2.</p>
- ◆ Both sets were gridded in 1deg x 1deg maps by making a surface in (lat,lon), interpolating the surface at the query points of 1deg x1 deg boxes and returning the data at these points.
- ◆ To avoid the data gores we assemble the data for 6 days.


Dates for matching orbits

start	end	mid	duration	lon	lat
2014-08-04 03:13	2014-08-04 16:21	2014-08-04 09:49	13.135	33.112	68.104
2014-08-06 19:17	2014-08-07 08:24	2014-08-07 01:47	13.114	175.93	2.224
2014-08-09 11:17	2014-08-10 00:22	2014-08-09 17:50	13.087	-54.67	-47.507
2014-08-12 03:14	2014-08-12 16:21	2014-08-12 09:49	13.114	-146.479	-67.821
2014-08-14 19:09	2014-08-15 08:14	2014-08-15 01:40	13.083	1.906	23.226
2014-08-17 11:05	2014-08-18 00:12	2014-08-17 17:41	13.111	161.36	77.345
2014-08-20 03:03	2014-08-20 16:07	2014-08-20 09:32	13.08	59.166	6.532
2014-08-22 18:56	2014-08-23 08:02	2014-08-23 01:31	13.098	-166.005	-56.555
2014-08-25 10:53	2014-08-25 23:59	2014-08-25 17:25	13.091	113.556	-42.897
2014-08-28 02:47	2014-08-28 15:52	2014-08-28 09:19	13.079	-109.883	37.476
2014-08-30 18:42	2014-08-31 07:49	2014-08-31 01:17	13.114	154.907	72.287


Evan Fishbein

Selected days: 2014-08-04, 12, 20, 25 28,30


OLR A&D data

Clear OLR A&D data

Surface Temperature A&D data

Tentative Conclusions

- ♦ More retrievals are needed to compare the climatic trends